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Abstract: Crop type inventory and within season estimates at moderate (<30 m) resolution have been
elusive in many regions due to the lack of temporal frequency, clouds, and restrictive data policies.
New opportunities exist from the operational fusion of Landsat-8 Operational Land Imager (OLI),
Sentinel-2 (A & B), and Sentinel-1 (A & B) which provide more frequent open access observations
now that these satellites are fully operating. The overarching goal of this research application was to
compare Harmonized Landsat-8 Sentinel-2 (HLS), Sentinel-1 (S1), and combined radar and optical
data in an operational, near-real-time (within 24 h) context. We evaluated the ability of these Earth
observations (EO) across major crops in four case study regions in United States (US) production hot
spots. Hindcast time series combinations of these EO were fed into random forest classifiers trained
with crop cover type information from the Cropland Data Layer (CDL) and ancillary ground truth.
The outcomes show HLS achieved high (>85%) accuracies and the ability to provide insight on crop
location and extent within the crop season. HLS fused with S1 had, at times, a higher accuracy (5–10%
relative overall accuracy and kappa increases) within season although the combination of fused data
was minimal at times, crop dependent, and the accuracies tended to converge by harvest. In cloud
prone regions and certain temporal periods, S1 performed well overall. The growth in the availability
of time dense moderate resolution data streams and different sensitivities of optical and radar data
provide a mechanism for within season crop mapping and area estimates that can help improve
food security.
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1. Introduction

Assessment and monitoring of crop type and extent is one of the most critical information needs
for food security followed by indicators of health and production. Stakeholders at all levels require
reliable and timely information to make sound decisions that can improve inventory, investments,
and mitigations. Since the 1970’s, projects such as the Large Area Crop Inventory Experiment (LACIE)
and Agricultural and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS)
have been leveraging spaceborne Earth observations to map crop type and extent. These early works
have evolved into many national scale systems and decision support tools that now leverage moderate
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resolution optical data for delineating croplands. For example, in the United States (US) the Department
of Agriculture, National Agricultural Statistics Service (USDA-NASS) generates annually the Cropland
Data Layer (CDL). In the past five years, CDL inputs have focused on using Landsat along with inputs
from Deimos-1, UK-Disaster Monitoring Constellation (DMC), and Sentinel-2 to generate nominal
30 m pixel resolution maps of crop type. Within the season they are used internally by NASS to
supplement planted area survey information but after the season they are released to the public and as
such have been used in a variety of landcover applications.

The increase in moderate resolution sensors, open and free access policies, and operational
and systematic coverage have created a new era of opportunities to improve operational crop type
assessment and monitoring (that is, Reference [1]). In particular, one promising source for driving
next-generation products is the potential of near-daily, moderate resolution, multispectral optical data
with the harmonization of Sentinel-2A and B with Landsat-8 Operational Land Imager (OLI). For the
first time, the applied science community has access to systematic, near-daily, moderate resolution
optical data. These scales of multispectral time series can potentially enable the transferability
of approaches that have been developed using sensors such as Moderate Resolution Imaging
Spectroradiometer (MODIS) (for example, References [2–5]) to support food security. Recently,
the globes first open access 30 m resolution crop area map that leveraged Landsat and cloud computing
was released as part of the Global Food Security-Support Analysis Data @ 30-m (GFSAD30) Project [6].
Other example efforts are showing the power of blending these optical sensors together, for example,
mapping national scale within season estimates of soybeans in the US [7].

Concordantly, the growth in the availability of Synthetic Aperture Radar (SAR) from Sentinel-1A
and B has created new opportunities for operational crop type mapping since the launch in 2014.
The all-weather capability, active sensing system that operates independent of cloud cover and
sun illumination, and sensitivity to surface and subsurface characteristics (that is, dielectric constant,
roughness, orientation) make SAR particularly useful for mapping agricultural and field characteristics.
However, historically SAR applications for crop monitoring have been much less relative to optical
data such as Landsat or MODIS. The reasons for this include, limited availability and little to no open
access operational observations, no consistent, large-area acquisition strategies, poor quality digital
elevation models required for processing, and complex data structures relative to optical data.

A few institutions, such as Agriculture and Agri-Food Canada, have been using SAR for
operational crop inventory, benefiting from access to ample Radarsat [8]. However, while many
SAR sensors (that is, ERS-1, ENVISAT ASAR, TerraSAR-X, Radarsat, ALOS) have been utilized for
research on crop mapping [9–13], few programs use SAR for operational crop mapping. Rice crops,
given their role in global food security and the tendency for cultivation in cloud prone regions,
have long utilized SAR for monitoring. The Asian Rice Crop Estimation and Monitoring (Asia-RiCE)
and Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) have spearheaded the
use of rice mapping using SAR and are beginning to scale up large-area operational systems for rice
production monitoring [14,15]. Over the next few years, the Joint Experiment for Crop Assessment
and Monitoring (JECAM) will further lead an initiative across global sites to develop SAR-optical crop
type mapping techniques as part of the GEO Agricultural Monitoring Community of Practice.

The overarching goal of this research application was to evaluate operational fusion of Sentinel-1
with Sentinel-2 and Landsat-8 for near real-time crop type mapping. Only very recently has the science
community had the opportunity to pragmatically blend these moderate resolution optical and SAR
data for crop inventory in an operational context. To achieve operational fusion of these moderate
resolution sensors for crop type mapping, the strengths and limitations need to be identified as well as
the development of methodologies. Objectives include the use of dense time series moderate resolution
EO, determination of the accuracy of sensors individually and combined, the performance for a given
crop, and when acceptable accuracy levels occur within the crop season.
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2. Methods

2.1. Study Areas

Four study regions approximately 110 × 110 km each were selected as case study sites
(Figure 1). These regions were selected to represent major agricultural production hot spots in the
USA with active field research that cover diverse bioclimates, soils, calendars, cloud probabilities,
and management practices to provide a robust set of test landscapes. These included northwest Ohio
(NWO), northeast Arkansas (NEA), southeast South Dakota (SED), and the northern Sacramento
Valley, California (VAI). Major crops (>5% of landscape) in NWO and SED include corn, soybeans,
winter wheat, and pasturelands. NEA includes cotton and rice production in addition to corn and
soy. VAI has a diverse crop matrix with areas of grapes, tomatoes, corn, rice, alfalfa, sunflower, clover,
almonds, and walnuts among other specialty crops (for example, onions, peas, watermelon, carrots).
Rain season, crop calendars, and management practices vary within and among the study regions
creating a robust set of calibration and validation crop type sites.
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Figure 1. The four diverse case study sites located in major production hot spots in the USA with
varying bioclimates, calendars, and managements.

2.2. Sentinel-1 Processing

Dual polarization (VV + VH) Sentinel-1 Interferometric Wide (IW) Ground Range Detection
(GRD) data were obtained from the Alaska Satellite Facility (ASF) for this application. Sentinel-1A
carries a C-band imager at 5.405 GHz with an incidence angle between 20◦ and 45◦. The platform
follows a Sun-synchronous, near-polar, circular orbit at a height of 693 km. These C-band radar data
were first transformed into Beta Naught to assist in radiometric terrain correction and thermal noise
removal using the look-up table (LUT) within the metadata. Radiometric distortion caused by the
terrain slope was corrected using the method proposed by Reference [16] to achieve Gamma Naught
γ◦, which is less dependent of the incidence angle than the Sigma Naught σ◦. The inherent speckle
noise was filtered using a Boxcar filter method with a 5-by-5 window size. Finally, with the assistance
of the precise orbit and 30 m Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM), all data were geocoded using the range-Doppler approach with the output resolution of 30 by
30 m (to match a nominal application scale in this case). All radar preprocessing were executed using
custom open access routines we built using Python, C, and GDAL and are available for sharing with
author contact. At the time of this application, only Sentinel-1A was uniformly operational over these
study domains.

2.3. Harmonized Landsat-8 Sentinel-2

The Harmonized Landsat-8 Sentinel-2 (HLS) is an ongoing processing chain effort to take
advantage of widely accessible moderate resolution optical platforms to increase the potential number



Remote Sens. 2018, 10, 1058 4 of 16

of temporal revisits (hls.gsfc.nasa.gov). This processing chain is evaluated over validation sites from
AERosol RObotic NETwork, Fluxnet, Societal Applications in Fisheries & Aquaculture using Remotely
Sensed Imagery, and Baseline Surface Radiation Network programs. The harmonization approach
(1) grids imagery to a common pixel resolution, projection, and spatial extent (that is, tile); (2) applies
atmospheric correction, the Landsat 8 Surface Reflectance Code (LaSRC) processor [17,18], relying of on
a long heritage of Landsat processing; (3) applies LaSRC cloud masking using efficient cloud and
cloud-shadow modules for Landsat-8 data [17,18] while Fmask [19] is used for Sentinel-2; (4) adjusts
to represent the response from a common spectral bandpass and BRDF-normalization keying off
a single, global and constant BRDF shape that produces satisfying BRDF normalization over a limited
range of view zenith angle [20,21]; (5) perform geographic co-registration using the Automated
Registration and Orthorectification Package (AROP) [22] to warp and co-register data. Note that the
bandpass adjustment corresponds to a linear fit between the equivalent spectral bands. The regression
coefficients were computed based on 500 hyperspectral spectra selected on 160 Hyperion scenes
globally distributed. At the end of this harmonization processing chain, a temporal frequency of
1–3 days using synchronized platforms is achieved (hls.gsfc.nasa.gov). In this application reflectances,
common indices (that is, NDVI, LSWI) that have shown value for classifying crops (that is, [23–26])
and thermal bands (TIR) were included as inputs into the classifier.

2.4. Classification and Assessment

Summarizing, S1, HLS, and blended HLS + S1 stacks were used in a hindcast approach (Figure 2,
Table 1) to classify major crop types in the four case study regions. For a classifier, we used the
ensemble, machine-learning, Random Forest (RF) algorithm [27]. Random forest is a flexible and
powerful nonparametric technique that many mapping applications have recently implemented for
a range of studies (for example, [28–31]). A random forest is generated through the creation of a series of
classification/decision trees using bootstrapping, or resampling with replacement. Tuning parameters,
such as the number of trees and the number of split candidate predictors, are generally chosen based
on the out-of-bag (OOB) prediction error. In this application, we implement the random forest classifier
from python sklearn and tuned with the exception of the number of trees.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 17 
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Table 1. The moderate resolution Earth observation inputs for crop classifier.

Sensors Band Code Band Name Wavelength (Micrometers)

HLS

CA Coastal Aerosol 0.44
B Blue 0.48
G Green 0.56
R Red 0.66

NIR NIR Narrow 0.86
SWIR1 SWIR1 1.61
SWIR2 SWIR2 2.2

CIRRUS Cirrus 1.37
NDVI Normalized Difference Vegetation Index-(NIR-R)/(NIR + R) Index
LSWI Land Surface Water Index-(NIR-SWIR1)/(NIR + SWIR1) Index

Landsat-8
TIRS1 Thermal Infrared 1 10.90
TIRS2 Thermal Infrared 2 12.00

Sentinel-2

REDEDGE1 Vegetation Red Edge 1 0.71
REDEDGE2 Vegetation Red Edge 2 0.74
REDEDGE3 Vegetation Red Edge 3 0.78
BROADNIR Broad NIR 0.84

WV Water Vapor 0.95

Sentinel-1
VH VH polarization C-band
VV VV polarization C-band

The number of trees is set to a large number (200) because compared with other classifiers
such as Support Vector Machine (SVM), the RF uses out-of-bag (OOB) samples for cross-validation,
and once the OOB errors stabilize at a sufficiently large number of trees, the training can be concluded.
The number of m variables that are selected randomly as candidates for splitting is set to the default
which is the square root of the number of total input predictors p. It should be noted that when the
number of variables p is large, but the fraction of relevant variables is small, RF can perform poorly
with a small m. We further use a variable importance metric based on the Gini index, where predictors
with higher importance are used more often to create a split, to understand how different days,
sensors and bands relate to model performance, noting that varying scales of measurement between
the predictors may also influence the importance ranking [32,33].

Due to the diverse imaging modes, acquisition dates, and the invalid values caused by cloud
within HLS, we interpolated the images stacks to standardized 15-day time windows between the
day of year 96 (6 April) and 308 (4 November). A 15-day interval was chosen to ensure at least one
observation from each of the sensors was available in every time window and further supported by
prior knowledge and subjective interpretation of plots (Figure 3). The interpolation was carried out
using a multi-temporal time series routine that allows one to explore the temporal domain of a large
space-time data set in an efficient manner. The routine, by reading small spatial chunks of all available
time layers, carries out spatial location specific calculations on all-time layers grouped by time (that is,
the year) and outputs maps of the time calculated values. Calculation algorithms are contained
in separate modules that can be strung together in a user-specified step order for more complex
calculations. In this application, we use a two-module step algorithm. It begins with a recomposite
step, which calculates a band specific average for a 15-day window at each pixel and concludes with
a gapfill step, which linearly interpolates the 15-day band specific average to fill in periods with
no observations.
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Figure 3. An example (A) time-frequency collected by sensor type across the northeast Arkansas (NEA)
case study region. An example (B) multitemporal time series routine post processing Sentinel-1
VH observations a single corn pixel from NEA. Open circles (raw) give the VH backscatter γ◦

from the original image overpass date (2016). Blue lines (recomposite) are the mean value for
each 15-day window shown by the vertical gray dotted lines, and the red line illustrates the final
smoothed/interpolated classification inputs.

We qualitatively considered various options for smoothing (that is, References [34,35]) following
the best practices and applications [36–39]. Ultimately, the focus of this work was blending the optical
and radar data for crop type classification case study; thus, a linear interpolation was sufficient and
simple to execute. If the first 15-day window was missing for a specific pixel and band, the spatial
average of that band for all crop areas was used to fill the missing value. The multi-temporal processing
for one single example pixel is shown in Figure 3. The advantage of this processing is an extremely
efficient implementation and its flexibility to be used in a near real-time application since the approach
gapfill interpolates using only past dates. Further investigation is needed to assess the uncertainties
added by this approach, in particular, when few time points are available overall.

Crop type training and validation came from the 2016 USDA NASS CDL. Details on the creation
of CDL can be found in Reference [40]. The CDL is a very good proxy for ground information
because it provides pixel-level accuracies of around 95% for major commodities in intensively farmed
regions (Table 2). For training, crop stratified random pixel (30 m resolution) samples of size 1000 in
each of the four case study areas were selected from a sampling unit. Samples were restricted to
homogenous patches of 5 by 5 windows with the same CDL class and pixels having at least five
Landsat 8, three Sentinel 2 and five Sentinel 1 valid overpass dates during the crop season (DOY 96
to 308). The subsample locations were used to extract time series’ from multitemporal processed
raster stacks of Harmonized Landsat and Sentinel 2 bands as well as Sentinel 1 bands VV and VH.
Validation was carried out using all CDL major crop type pixels over each study area. Error matrices
were generated based on these outcomes.
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Table 2. The cropland data layer accuracies statistics for major crops across four case study regions.

Producers
Accuracy

Omission
Error Kappa Users

Accuracy
Commission

Error
Conditional

Kappa

NEA
Corn 94.63 5.37 0.94 96.00 4.00 0.96

Cotton 94.37 5.63 0.94 97.07 2.93 0.97
Rice 97.49 2.51 0.97 98.20 1.80 0.98

Soybeans 97.34 2.66 0.96 94.35 5.65 0.92

NWO
Corn 97.30 2.70 0.96 97.70 2.30 0.97

Soybeans 97.98 2.02 0.97 98.08 1.92 0.97
Winter wheat 97.29 2.71 0.97 94.09 5.91 0.94

SED
Corn 96.77 3.23 0.96 96.01 3.99 0.95

Soybeans 97.05 2.95 0.96 96.12 3.88 0.95
Winter wheat 94.92 5.08 0.95 96.04 3.96 0.96

VAI
Corn 85.85 14.15 0.86 92.68 7.32 0.93

Cotton 98.04 1.96 0.98 94.88 5.12 0.95
Rice 99.77 0.23 1.00 99.89 0.11 1.00

Winter wheat 83.03 16.97 0.82 86.43 13.57 0.86
Alfalfa 96.25 3.75 0.96 93.34 6.66 0.93

Tomatoes 94.32 5.68 0.94 94.89 5.11 0.95
Grapes 92.24 7.76 0.92 92.27 7.73 0.92

Almonds 92.24 7.06 0.93 92.57 7.43 0.92
Pistachios 83.79 16.21 0.83 89.90 10.10 0.90

We further qualitatively assessed training data using a limited set of geofield photos taken during
the crop season. These field-level “windshield drive-by” photos were collected using a smartphone
app. All the geofield photos are linked to shape files or keyhole markup language (KML) files to store,
display, and share photos. These photos are available for viewing and sharing at www.eomf.ou.edu/
photos. Further, we used a limited set of Common Land Unit (CLU) polygons from the USDA Farm
Service Agency to generate mean summary statistics from the integrated data stacks. These CLU data
were also qualitatively used to compare training data statistically. Together, these ultimately provide
high confidence in the use of the calibration and validation data.

3. Results

The cloud masks applied to the HLS imagery removed an average of 35, 37, 59, and 29% of valid
pixels for NEA, NWO, SED, and VAI, respectively, across time (DOY 90–310) (Figure 4). Noted is
that we did not perform regional tuning of the cloud mask algorithms given the operational context
of this research application. The heat maps illustrating the number of quality observations shows
that the valid counts range from 4–40 across the four case study sites. Further, the number of quality
observations varies within the study regions due to the path row footprints, cloud, ascending versus
descending orbits and the effects of the observations strategies. The highest frequency of observations
is apparent in the path overlap regions.

Accuracy measures range by region, sensor, time, and crop type. Note these error matrices reflect
the model classes in that only major agricultural land uses were used (that is, no built, water, forested,
and so forth), which, therefore, influences the accuracy and kappa outcomes. Using NEA (Figure 5)
as an example, S1-only overall accuracies (OA) and kappa values for the first (DOY 96) period were
30% and 7, respectively, while the outcomes at the end of the season (DOY 300) were 82% and 72,
respectively (Table 3). For HLS, the overall accuracies and kappa values for the first period were 47%
and 27 while the outcomes at the end of the season were 92% and 87, respectively. For integrated stacks

www.eomf.ou.edu/photos
www.eomf.ou.edu/photos


Remote Sens. 2018, 10, 1058 8 of 16

(HLS + S1) the overall and kappa outcomes were 48% and 28 initially while the end of the season
values were 94% and 90, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 17 
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Users and Producers Accuracies (UA/PA) for the first and end of season periods for NEA for
major crops including corn, cotton, rice, and soybean are illustrated in Table 3. Corn had the most
confusion with S1-only in NEA with UA of 52% by end of the season compared to 80% when using HLS.
In VAI, almonds had an integrated UA of 27 and fallow cropland and winter wheat had UA slightly
below 60% while all other crops had UA and PA over 60%, including corn, rice, alfalfa, tomatoes,
grapes, grassland, and walnuts (Figure 6A,B). To succinctly summarize the hundreds of classifications
(sensors × time × regions), Figure 7 summarizes the overall accuracy and kappa values for each site
over time and by sensor type. Evident is the increasing accuracies as seasonal crops develop.
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Table 3. An example error matrix for one classification scheme in northeast Arkansas (NEA) by sensor combinations at Day Of Year 96 and 300 highlighting shifts
in accuracy.

Integrated (HLS + S1) Harmonized Landsat-8 Senstinel-2 Sentinel-1
Corn Cotton Rice Soybean Total UA (%) Corn Cotton Rice Soybean Total UA (%) Corn Cotton Rice Soybean Total UA (%)

Ti
m

e
pe

ri
od

1
(D

O
Y

96
)

Corn 264,005 118,443 183,718 433,604 999,770 26.4 Corn 270,040 131,110 194,874 470,155 1,066,179 25.3 Corn 62,610 119,855 110,135 348,240 640,840 9.8
Cotton 81,110 483,831 135,953 614,877 1,315,771 36.8 Cotton 79,956 471,564 135,803 599,531 1,286,854 36.6 Cotton 74,351 239,036 146,220 611,790 1,071,397 22.3

Rice 29,982 31,396 570,107 706,372 1,337,857 42.6 Rice 29,839 36,314 568,741 751,340 1,386,234 41.0 Rice 235,002 227,251 709,842 1,406,737 2,578,832 27.5
Soybean 58,762 107,978 227,970 1,196,236 1,590,946 75.2 Soybean 54,024 102,660 218,330 1,130,063 1,505,077 75.1 Soybean 61,896 155,506 151,551 584,322 953,275 61.3

Total 433,859 741,648 1,117,748 2,951,089 5,244,344 Total 433,859 741,648 1,117,748 2,951,089 5,244,344 Total 433,859 741,648 1,117,748 2,951,089 5,244,344
PA (%) 60.9 65.2 51.0 40.5 PA (%) 62.2 63.6 50.9 38.3 PA (%) 14.4 32.2 63.5 19.8
OA (%) 47.9 OA (%) 46.5 OA (%) 30.4

Kappa (%) 28.1 Kappa (%) 26.8 Kappa (%) 7.7
Corn Cotton Rice Soybean Total UA (%) Corn Cotton Rice Soybean Total UA (%) Corn Cotton Rice Soybean Total UA (%)

Ti
m

e
pe

ri
od

17
(D

O
Y

30
0)

Corn 420,581 19,979 30,536 49,914 521,010 80.7 Corn 420,014 20,027 33,408 54,074 527,523 79.6 Corn 388,786 21,376 77,938 261,976 750,076 51.8
Cotton 1146 672,896 32,378 67,362 773,782 87.0 Cotton 1061 665,961 34,998 90,957 792,977 84.0 Cotton 5570 609,824 27,540 188,674 831,608 73.3

Rice 2406 4438 1,000,419 38,225 1,045,488 95.7 Rice 4380 5519 990,093 69,757 1,069,749 92.6 Rice 14,371 6838 924,401 120,871 1,066,481 86.7
Soybean 9726 44,335 54,415 2,795,588 2,904,064 96.3 Soybean 8404 50,141 59,249 2,736,301 2,854,095 95.9 Soybean 25,132 103,610 87,869 2,379,568 2,596,179 91.7

Total 433,859 741,648 1,117,748 2,951,089 5,244,344 Total 433,859 741,648 1,117,748 2,951,089 5,244,344 Total 433,859 741,648 1,117,748 2,951,089 5,244,344
PA (%) 96.9 90.7 89.5 94.7 PA (%) 96.8 89.8 88.6 92.7 PA (%) 89.6 82.2 82.7 80.6
OA (%) 93.2 OA (%) 91.8 OA (%) 82.0

Kappa (%) 89.0 Kappa (%) 86.7 Kappa (%) 72.1
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The variable importance was measured using the Gini index. Looking at the single highest Gini
index by model, a given region typically maxes out using a certain variable (band) on a certain day of
the year. These outcomes coincide with the overall accuracy and kappa plateaus for a given region.
For NWO and SED, this is 197, while for NEA, this is 239 and in VAI it depends on the sensor (that is,
HLS NDVI 113) or data availability. In VAI, there is a visible influence of data by sensor availability,
which also factors in which bands have the highest Gini index. In VAI, NDVI, LSWI, and S2, the red
edge-1 are intermixed over time as the highest ranked. In SED, NDVI followed by S2 red edge-1 show
up as the most important from DOY 141 to 239. In NWO and NEA, LSWI, VV, and SWIR are ranked
the highest. Cirrus and TIR were often ranked the least important across the four case study sites and
over time.

4. Discussion

Generally, the HLS performed very well in these case studies of mapping major crop type in
four US production hot spots. VAI with its 10 diverse crops was the only site which did not achieve
>85% overall accuracy keeping in mind outcomes are relative (only major crop classes considered)
and should be taken in the context of the study design. The S1 alone performed adequately while the
combination of the radar and optical satellite imagery tended to out-perform any individual sensor
earlier in the growing season. However, in many cases, the fusion of optical and radar only provide
incremental improvements. For any given region, major crop, or time of year example arguments can
be made of which sensor or combination is superior. We emphasize that this is a relatively simple
case study testing ability to distinguish major crop types (categorical variable) only with the ensemble
machine learning classifier.

We note that CDL was used as the primary calibration and validation data in this research
application and this has inherent uncertainties. With the robust sampling approach described in
combination with limited geofield photos and CLU considerations, we feel confident in the quality
of the calibration and validation. The CDL PA and UA all have crop specific accuracies of over 93%,
excluding corn, winter wheat, and pistachios in VAI. Therefore, it is possible these uncertainties
influenced the outcomes of VAI. However, in our experience, CLUs, which are used to train CDL,
have embedded errors and the misclassifications in CDL often tend to be related to noise (edge effect,
speckling) so we suggest that this is as robust an overall approach as operationally feasible.

Clouds are often cited as the main advantage in using radar. Here the cloud masks generated with
the HLS products were not further tuned and taken and applied as is. In the Southeast South Dakota
study region, 38 HLS overpasses had more than 90% of the pixels flagged. It is very likely that these
numbers could be lowed (improved) with regional tuning and cloud mask refinement. Masking clouds
remains an evolving and active research topic [41,42]. However, the classification outcomes indicate
the multitemporal routine, of compositing and interpolating the quality HLS observations, and the
classification approach still out-performed the S1 only data by 5% and 8 for overall accuracy and kappa,
respectively. Potentially, HLS in geographies like South or Southeast Asia with persistent clouds might
be severely limited during crucial periods for food security decision making. These outcomes are also
shaped by the study design and, in fact, only two bands are available from S1 IW mode (that is, VV, VH)
versus several bands available from HLS and the use of random forest. It is possible that techniques
leveraging quad polarization or repeat-pass interferometric information with more sensitivity tuned
to the number and density, dielectric contrast, orientation and shape, or surface roughness of targets
would improve radar only accuracy (for example, References [43,44]).

The timing of quality observations had an influence on the outcomes. The OA and kappa tend to
plateau around DOY 200 for southeast Dakota and northwest Ohio with maximum accuracy leveling
out. This is likely due to the relatively simple crop classification schemes of only corn, soy, and grasses
(winter wheat and/or pasture). Northeast Arkansas did not plateau until DOY 240, and generally,
S1 tended to plateau a few 15-day periods later than HLS, with the classifier using the additional
observations to statistically differentiate between categories. This further amplifies the value of the
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additional parameters (bands) in terms of random forest computational needs. On the other hand,
this approach allowed for a near real-time implementation.

The timing and number observations are pronounced in the variable importance analysis.
The ‘most valuable’ variable, according to this study context, can shift throughout the time series and
does not necessarily have biogeophysical meaning tied to crop phenological attributes (for example,
chlorophyll, biomass, leaf area index, roughness). Since we fit models iteratively in time there are
complex interactions between the day of year and sensor band. In particular, the band with the highest
Gini index for a particular image day input changes depending on the other dates available in the
model. In Figure 8, we show this for each of the by-day NEA models when all HLS and S1A bands
are included. For example, the band with the highest Gini index for the first image recomposite
period (DOY 90) includes S2 Rededge-1, TIRS1, NIR, and NDVI. However, overall, the VH, LSWI,
NIR, and SWIR bands populated the top variables during the key early season periods of crop
development (Figure 8). This likely indicates that volume, leaf moisture or equivalent water thickness,
green biomass vigor, and residue and organic matter are driving these parameters to the top of the
classifier importance rankings. Parameters (bands) that showed up as the least important were cirrus
and TIRS with the earlier periods (for example, DOY 90) getting the least weight.
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5. Conclusions

Overall, the outcomes of these case study crop type classifications highlight the utility of higher
temporal frequency moderate resolution data streams. Both HLS and S1 offer contributions to
characterizing major crop types with the combination of radar and optical adding value (5–10%
relative accuracy increases earlier and during the crop season). By the end of the crop season,
the overall accuracy and kappa tend to converge showing equivalent capability in these regions.
The harmonization of Landsat-8 and Sentinel-2 performed best and evident is the ability to distinguish
major crop types within a season with high accuracy approaching harvest. Typically, observations
from these sensors are available within 12–24 h providing a mechanism for near-real-time capabilities.
However, it should be noted that currently HLS processing is not on demand and requires additional
harmonization processing. In regions with chronic and persistent cloud cover, this work indicates
Sentinel-1 can be very effective in providing major crop type inventory estimates within the season.
With ESA striving for 24-h latency on S1 this should be able to support operational production.
Given the short latency and quality calibration of these sensors, the science community is now
beginning to take advantage of these opportunities to drive decision support tools and inventory
programs to enhance food security with within season estimates of extent. Being able to monitor and
assess production at field scale will drastically enhance decision making. Future work can consider
evaluating fusion in other regions and crops, transferability of models across space and time (years),
using additional ground truth for accuracy and uncertainty quantification, and scaling over large
regions operationally are potential next steps. As more moderate resolution sensors come online in
an operational context the agricultural monitoring community can potentially support within season
major crop type production estimates. This can help to meet the most important need for food security.

Author Contributions: Conceptualization, N.T., B.Z., X.H.; Methodology, X.H., B.Z., N.T.; Data Curation, X.H.,
B.Z., J.M., D.J., M.R.; Writing, N.T.; Editing, N.T., B.Z., X.H., J.M., D.J., M.R.

Funding: This research was funded in part by NASA SBIR (S5.02-8891), NASA Earth Observations for Food
Security and Agriculture Consortium (80NSSC17K0625), and NASA NISAR 17-009419A.

Acknowledgments: Thanks to Ian Cooke, Bobby Braswell, and Lindsey Melendy for assistance in data
development, the HLS team at NASA Goddard Space Flight Center, ESA for Sentinel-1, the EOFSAC initiative
and NASA-ISRO SAR Mission (NISAR), and data providers including NASA/USGS and ESA.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop
Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]

2. Whitcraft, A.; Becker-Reshef, I.; Justice, C. Agricultural growing season calendars derived from MODIS
surface reflectance. Int. J. Digit. Earth 2014, 8, 173–197. [CrossRef]

3. Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A Generalized Regression-based Model for
Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data. Remote Sens. Environ. 2010, 114,
1312–1323. [CrossRef]

4. Franch, B.; Vermote, E.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Justice, C.; Sobrino, J. Improving
the timeliness of winter wheat production forecast in the United States of America, Ukraine and China
using MODIS data and NCAR Growing Degree Day information. Remote Sens. Environ. 2015, 161, 131–148.
[CrossRef]

5. Johnson, D. A comprehensive assessment of the correlations between field crop yields and commonly used
MODIS products. Int. J. Appl. Earth Obs. Geoinform. 2016, 52, 65–81. [CrossRef]

6. Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A. Nominal 30-m Cropland
Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2
and Landsat-8 Data on Google. Remote Sens. 2017, 9, 1065. [CrossRef]

http://dx.doi.org/10.1109/LGRS.2017.2681128
http://dx.doi.org/10.1080/17538947.2014.894147
http://dx.doi.org/10.1016/j.rse.2010.01.010
http://dx.doi.org/10.1016/j.rse.2015.02.014
http://dx.doi.org/10.1016/j.jag.2016.05.010
http://dx.doi.org/10.3390/rs9101065


Remote Sens. 2018, 10, 1058 15 of 16

7. Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.;
Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium
resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [CrossRef]

8. McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic
Aperture Radar (SAR) imagery for delivering operational annual crop inventories. Int J. Photogramm.
Remote Sens. 2009, 64, 434–449. [CrossRef]

9. Bouvet, A.; LeToan, T.; Lam-Dao, N. Monitoring of the rice cropping system in the Mekong Delta using
ENVISAT/ASAR dual polarization data. IEEE Trans. Geosci. Remote Sens. 2011, 47, 517–526. [CrossRef]

10. Liao, C.; Wang, J.; Shang, J.; Huang, X.; Liu, J.; Huffman, T. Sensitivity study of Radarsat-2 polarimetric SAR
to crop height and fractional vegetation cover of corn and wheat. Int. J. Remote Sens. 2018, 39, 1475–1490.
[CrossRef]

11. Huang, X.; Wang, J.; Shang, J.; Liao, C.; Liu, J. Application of polarization signature to land cover scattering
mechanism analysis and classification using multi-temporal C-band polarimetric RADARSAT-2 imagery.
Remote Sens. Environ. 2018, 193, 11–28. [CrossRef]

12. Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across Myanmar using time series
Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [CrossRef]

13. Clauss, K.; Ottinger, M.; Kuenzer, C. Mapping rice areas with Sentinel-1 time series and superpixel
segmentation. Int. J. Remote Sens. 2018, 39, 1399–1420. [CrossRef]

14. Nelson, A.; Setiyono, T.; Rala, A.B.; Quicho, E.D.; Raviz, J.V.; Abonete, P.J.; Maunahan, A.A.; Garcia, C.A.;
Bhatti, H.Z.M.; Villano, L.S.; et al. Towards an Operational SAR-Based Rice Monitoring System in Asia:
Examples from 13 Demonstration Sites across Asia in the RIICE Project. Remote Sens. 2014, 6, 10773–10812.
[CrossRef]

15. Steventon, M.; Ward, S.; Dyke, G.; Sobue, S.; Oyoshi, K. Asian Rice Crop Estimation and Monitoring Component
of GEOGLAM (Asia-RiCE) 2017/Phase 2 Implementation Report; JAXA (Japan Aerospace Exploration Agency):
Tokyo, Japan, 2018.

16. Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 3081–3093. [CrossRef]

17. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat
8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef]

18. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K.
A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Soc. 2006, 3,
68–72. [CrossRef]

19. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow,
and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277.
[CrossRef]

20. Claverie, M.; Vermote, E.; Franch, B.; He, T.; Hagolle, O.; Kadiri, M.; Masek, J. Evaluation of Medium Spatial
Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5) Acquisitions. Remote Sens.
2015, 7, 12057–12075. [CrossRef]

21. Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.;
Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance.
Remote Sens. Environ. 2016, 176, 255–271. [CrossRef]

22. Gao, F.; Masek, J.G.; Wolfe, R.E. Automated registration and orthorectification package for Landsat and
Landsat-like data processing. J. Appl. Remote Sens. 2009, 3, 033515.

23. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with
ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10 December 1974.

24. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ.
1979, 8, 127–150. [CrossRef]

25. Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Liu, M. Characterization of forest types in Northeastern China,
using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 2002, 82, 335–348. [CrossRef]

26. Hagen, S.; Heilman, P.; Marsett, R.; Torbick, N.; Salas, W.; van Ravensway, J.; Qi, J. Mapping total vegetation
cover across western rangelands with MODIS data. Rangel. Ecol. Manag. 2012, 65, 456–467. [CrossRef]

27. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2017.01.008
http://dx.doi.org/10.1016/j.isprsjprs.2008.07.006
http://dx.doi.org/10.1109/TGRS.2008.2007963
http://dx.doi.org/10.1080/01431161.2017.1407046
http://dx.doi.org/10.1016/j.rse.2017.02.014
http://dx.doi.org/10.3390/rs9020119
http://dx.doi.org/10.1080/01431161.2017.1404162
http://dx.doi.org/10.3390/rs61110773
http://dx.doi.org/10.1109/TGRS.2011.2120616
http://dx.doi.org/10.1016/j.rse.2016.04.008
http://dx.doi.org/10.1109/LGRS.2005.857030
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.3390/rs70912057
http://dx.doi.org/10.1016/j.rse.2016.01.023
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/S0034-4257(02)00051-2
http://dx.doi.org/10.2111/REM-D-11-00188.1
http://dx.doi.org/10.1023/A:1010933404324


Remote Sens. 2018, 10, 1058 16 of 16

28. Wilkes, P.; Jones, S.D.; Suarez, L.; Mellor, A.; Woodgate, W.; Soto-Berelov, M.; Haywood, A.; Skidmore, A.K.
Mapping forest canopy height over large areas by upscaling ALS estimates with freely available satellite
data. Remote Sens. 2015, 7, 12563–12587. [CrossRef]

29. Song, W.; Dolon, J.M.; Cline, D.; Xiong, G. Leanring-based algal bloom event recognition for oceanographic
decision support system using remote sensing data. Remote Sens. 2015, 7, 13564–13585. [CrossRef]

30. Torbick, N.; Corbiere, M. Mapping urban sprawl and impervious surfaces in the northeast United States for
the past four decades. GISci. Remote Sens. 2015, 52, 746–764. [CrossRef]

31. Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping tree canopy cover and
aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sens. 2015,
7, 10017–10041. [CrossRef]

32. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009.

33. Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures:
Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [CrossRef] [PubMed]

34. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

35. Whittaker, E.T.; Robinson, G. The Calculus of Observations. Trans. Fac. Act. 1924, 10, 1924–1925.
36. Atzberger, C.; Eilers, P.H.C. A time series for monitoring vegetation activity and phenology at 10-daily time

steps covering large parts of South America. Int. J. Dig. Earth 2011, 4, 365–386. [CrossRef]
37. Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing

satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417.
[CrossRef]

38. Eilers, P.H.C. A Perfect Smoother. Anal. Chem. 2003, 75, 3631–3636. [CrossRef] [PubMed]
39. Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data.

Comput. Geosci. Vol. 2004, 30, 833–845. [CrossRef]
40. Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture,

National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358.
[CrossRef]

41. Foga, S.; Scaramuzza, P.; Guo, S.; Zhu, Z.; Dilley, R.; Beckmann, T.; Schmidt, G.; Dwyer, J.; Hughes, M.;
Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products.
Remote Sens. Environ. Vol. 2017, 194, 379–390. [CrossRef]

42. Qiu, S.; He, B.; Zhu, Z.; Quan, X. Improving Fmask cloud and cloud shadow detection in mountainous area
for Landsats 4–8 images. Remote Sens. Environ. 2017, 199, 107–119. [CrossRef]

43. Huang, X.; Wang, J.; Shang, J. An integrated surface parameter inversion scheme over agricultural fields
at early growing stages by means of C-band polarimetric RADARSAT-2 imagery. IEEE Trans. Geosci.
Remote Sens. 2017, 54, 2510–2528. [CrossRef]

44. Canisius, F.; Shang, J.; Liu, J.; Huang, X.; Ma, B.; Jiao, X.; Geng, X.; Kovacs, J.; Walters, D. Tracking crop
phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sens. Environ. Vol.
2018, 210, 508–518. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs70912563
http://dx.doi.org/10.3390/rs71013564
http://dx.doi.org/10.1080/15481603.2015.1076561
http://dx.doi.org/10.3390/rs70810017
http://dx.doi.org/10.1186/1471-2105-8-25
http://www.ncbi.nlm.nih.gov/pubmed/17254353
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1080/17538947.2010.505664
http://dx.doi.org/10.1016/j.rse.2012.04.001
http://dx.doi.org/10.1021/ac034173t
http://www.ncbi.nlm.nih.gov/pubmed/14570219
http://dx.doi.org/10.1016/j.cageo.2004.05.006
http://dx.doi.org/10.1080/10106049.2011.562309
http://dx.doi.org/10.1016/j.rse.2017.03.026
http://dx.doi.org/10.1016/j.rse.2017.07.002
http://dx.doi.org/10.1109/TGRS.2015.2502600
http://dx.doi.org/10.1016/j.rse.2017.07.031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Study Areas 
	Sentinel-1 Processing 
	Harmonized Landsat-8 Sentinel-2 
	Classification and Assessment 

	Results 
	Discussion 
	Conclusions 
	References

